You are here


Name: ICT-enabled, cellular artificial liver system incorporating personalized patient management and support
Objectives: D-LIVER applies scenario-driven development methodologies to address an unmet need for
bio-artificial liver support via continuous detoxification as remote transient therapy at the Point-of-Need.
The liver is a complex organ with various vital functions in synthesis, detoxification and regulation; its failure is life-threatening and the only curative treatment is transplantation. Whilst awaiting transplantation, or after liver resection, patients need to be supported with detoxification systems which, currently mainly based on filtration, do not support metabolic liver function. This can only be provided by living cells.

Thus, development of ICT-enabled bio-artificial liver support systems with associated remote monitoring to assist in the treatment and management of liver patients in care settings extending from the hospital to the home is essential. D-LIVER targets sensor-based monitoring of patient health status at home, concentrating on continuous monitoring of physiological parameters and discrete measurement of a defined set of biochemical species.
D-LIVER also targets remote monitoring and control of the bio-artificial liver and communication with patient sensor networks and hospital information systems. Systems will be capable of remote, secure communication of the status of both the patient and the bio-artificial liver to central clinical services such that they can schedule swift and beneficial treatment and remedial actions.

In this way D-LIVER will provide fundamental advances in liver support by reducing hospitalisation costs while enhancing quality of care and, at the same time, reinforcing European leadership in Personal Health systems. In a parallel, high-risk, activity the production of human hepatocytes from pancreatic progenitor cells will be investigated.
These would be ideal for use in D-LIVER systems since they may provide an unlimited supply of hepatocytes, which would overcome drawbacks associated with both primary hepatocytes and stem cells.

Keywords: eHealth, artificial liver
Partners:  Newcastle University (coordinador), Commissariat Energie Atomique, Charité – Universitätsmedizin Berlin, Centre Suisse d’Electronique et de Microtechnique, Fraunhofer Institut für Biomedizinische Technik, Institut für Mikrotechnik Mainz, iXscient Ltd, Olivetti i-Jet, Stiftelsen SINTEF, Universitat Rovira i Virgili, DEKRA, Stem Cell Systems, 4M2C Patric Salomon GMBH, STAR Healthcare Management GmbH.
Funded by:
VII Framework Programme
Nº: 287596
Period: 2011 - 2015
Budget: 544.600 € 
Category: Technological Innovation